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A new form of Coulomb and resonance integrals for extended Hiickel type 
molecular orbital calculations was derived. In this model an electron moving 
in a molecule, when it stays in the neighborhood of the center of  an atom in 
the molecule, sees the potential of  the corresponding isolated atom. Compared  
with the well-known forms of Coulomb and resonance integrals, each integral 
derived from this model considers the influences from all atoms in the 
molecule, and includes the concept of  atomic cell. The similarities of this 
model to other extended Hiickel type formulations are also examined. 
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1. Introduction (effective Hamiltonian) 

In the Hiickel theory, the complete Hamiltonian of a molecule (the sum of kinetic 
energy of electrons, electron-electron interaction energy, electron-nucleus inter- 
action, and nucleus-nucleus interaction energy) is approximated as 

N 
Y ( ( 1 , 2 , . . . ,  N)--~ • A(/z), (1) 

/~=1 

where the summation runs over all electrons in the molecule, and A(~) is the 
effective one-electron Hamil tonian of the /~th  electron, which may consist of  the 
kinetic energy, the nuclear attractive energy, and the repulsive energy from other 
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electrons in the molecule [1]. The electron-electron interaction energy is counted 
~wice on the right side of  Eq. (1), and the extra part is usually compared with 
the nuclear term. Although the electron-electron term of  the Hartree-Fock method 
is often a few times greater than the nuclear term in the complete Hamiltonian 
[2], the idea of the approximation is based on the expectation that the electron- 
electron energy and the inter-nuclear energy could be balanced [1, 3]. Thus one 
may use the approximation at least in the qualitative treatment. Considering the 
quantitative treatment as well, one may use the right side of Eq. (1) as an 
unperturbed Hamiltonian in the M~ller-Plesset perturbation formalism [4]. 

The solutions of the Schr6dinger equation for the approximate Hamiltonian on 
the right side of Eq. (1) are represented by Slater determinants that consist of 
the occupied spin orbitals selected out of the eigenfunctions of the one-electron 
Hamiltonian ~(/z), and the eigen-energy for the configuration state function is 
the simple sum of the spin orbital energies, which corresponds to the rough 
estimation of  the state function and the average energy of any electronic configur- 
ation. It is desired that the roughly calculated energies be close to the experimental 
values for the states with the corresponding electronic configuration. In this 
paper, we introduce a new form of ~(/z), which is simple and may be regarded 
as a reasonable description of one-electron Hamiltonian in the average state of 
the ground and excited electronic configurations. 

2. A new one-electron potential (linkage of embedded atomic fields) 

In Eq. (1), ~(/ ,)  is considered as the one-electron Hamiltonian 

/~ ( / z )=( -1 /2 )h ( /x ) - -  ~ (Z,/r~,~)+u(tz, c), (2) 
~=1  

where the first term is the kinetic energy of the /x th  electron, the second term is 
the Coulomb attraction from nuclei, and the third term u(/~, c) is the Coulomb 
repulsion from other electrons as a function of  the coordinates of the/z th  electron 
and the electronic configuration c. The form of the third term emphasizes that 
the electronic repulsion term cannot be described as a function of only the 
coordinates of the electron under consideration. In other words, it is necessary 
to presume the positions or distribution of other electrons. One assumption may 
be the distribution of  electrons in a certain configuration calculated by such an 
appropriate method as the Hartree-Fock method. It is also reasonable to assume 
that all electrons move around the center of each atom, so as to shield the nuclear 
charge, in the average state of the ground and excited states, as shown below. 

First, one divides the total three-dimensional space into the neighborhoods of 
nuclei in an isolated molecule, namely, "atomic cells", g l ,  g 2 , . - . ,  g , ,  which 
satisfy the following conditions. For an arbitrary pair of different atomic cells, 
(g~, g~), 

r (a  #/3) ,  (3) 
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and for all atomic cells in the molecule, 

~ l u ~ 2 u ' ' ' ~ , =  0 ~ =~3 ,  (4) 
o~ 1 

where 9~ 3 represents the total set of position vectors of a particle and ~b is empty 
set. In addition, it is assumed that each atomic cell contains a large portion of 
the imaginary charge of electrons of the corresponding isolated atom in the 
ground state, and that the space outside the molecule be appropriately included 
by the cells at the surface of the molecule. These cells may be analogous to the 
Wigner-Seitz cells in crystals. 1 Secondly, one assumes a hypothetical neutral 
molecule as follows, which may be the zeroth order approximation of various 
kinds of  real neutral molecules and supermolecules (nonpolar molecules, polar 
molecules, charge-transfer complexes, ion pairs, etc.). In the zeroth order 
molecule, the net charge of the electrons and the nucleus contained in each 
atomic cell is zero, and electrons are moving under the zero-charge condition. 
In other words, when an electron, which would be described in our one-electron 
Schr6dinger equation, migrates from an atomic cell ~ to an adjacent atomic 
cell ~t3, an appropriate inter-cellular migration of other electrons occur simul- 
taneously, so as to retain the zero-charge condition (e.g. another electron's 
migration from the cell ~t3 to the cell ~ ) .  In addition, it is assumed that the 
electrons in this zeroth order molecule are not far apart from the molecule like 
those in the Rydberg excited states, but stay inside the molecule like those in the 
ground and valence excited states. Thus it is expected that the large portion of 
the potential, which the electron staying in the cell ~ sees, consists of the 
attraction from the nucleus a and the repulsion from ( Z ~ - 1 )  other electrons 
staying in the cell ~ ,  because the attraction from any other nucleus/3 and the 
repulsion from Zt~ electrons staying in the cell ~t~ are roughly compensated each 
other. The above one-electron potential may be written as 

v(r) = v~(r) (when r c ~ ) ,  (5) 

where r denotes the position vector of the electron to be described and v~(r) 
means the one-electron potential that is shared by all the Hartree-Fock orbitals 
for the ground state and the excited orbitals for the one-electron-excited state 
[5] of the isolated neutral atom with the nucleus a. From now on, we will call 
this type of  potential "linkage of embedded atomic fields (LEAF)".  Since the 
LEAF potential is literally described as an atomic potential in each cell, it is easy 
to image and understand. 

3. Matrix elements of LEAF Hamiltonian 

One can easily find the following property of the one-electron Hamiltonian 
~LEAF(r) that possesses the one-electron potential (5). From Eq. (5), for an 

1 The atomic cells in a molecule are not given definitely like Wigner-Seitz cells, while we proceed 
under the mathematical conditions, Eqs. (3) and (4), and the intuitive image of atomic cells 
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arbitrary bound-state one-electron function f(r) ,  

~LEAFf(r) = [--(1/2)A + v)f(r) 

= [-(1/2)A + v~]f(r) 

= ,~j(r )  (when r e r (6) 

where //~ denotes the one-electron Hamiltonian possessing the one-electron 
potential vs. The eigenfunctions of the operator ~ are the Hartree-Fock orbitals 
for the ground state and the excited orbitals for the one-electron-excited states, 
and specified as 

a~ch~, = e,~,cb,~i, (7) 

where ~b~i denotes the ith normalized eigenfunction of the bound state; in case 
that ~b~i is a ground-state orbital, the ith eigenvalue e,i corresponds to the negative 
value of an ionization potential of the ground-state atom, and in case that ~b,~ is 
an excited orbital for a one-electron-excited state, the difference in energy between 
~b~, and the ground-state orbital involved in the excitation corresponds to the 
excitation energy [5]. 

Considering Eq. (6), one can easily obtain the matrix elements Of~LEAF as follows. 
If the atomic cells in a molecule, which satisfy Eqs. (3) and (4), are regarded as 
three-dimensional domains of spatial integration, the addition theorem of definite 
integral gives 

Thus, for an arbitrary pair of bound-state one-electron functions, f(r)  and g(r), 

(AaLEAFIg) ~ j- f*'~LEAFg dr 

- -  f*~LEAFg dr, (9) 
a = l  ~ 

where dr represents the volume element and integrations are taken in the three- 
dimensional domains represented by the subscripts of integral symbols. Since 
the variable of the integrand (r) belongs to the cell g~ when the domain of 
integration is g~, from Eq. (6), 

I~of*~LEAFg dr= fc f * ~ g  dr. (10) 

In addition, since an arbitrary bound-state one-electron function can be expanded 
in terms of the descrete series of bound-state atomic orbitals on the nucleus a as 

f = ~  4'~,(4'~,1f), (11) 
i 

! J a 
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where Eq. (7) is utilized and (.fig) denotes the integral 

~ f*g  dr. (13) 

Summarizing Eqs. (9), (10), and (12), an arbitrary matrix elements of the LEAF 
Hamiltonian is found to be represented as 

(J]/~LEAFIg) = ~. E E (J]4~,~,)W(a, i; a,j; ~,0%(4,,~jlg), (14) 
a= l  i j 

where the function W(a, i; fl, j; ~ )  is defined as 

W(a, i; fl, j; ~)=- [~ 49*,qSojdr. (15) 

Since Eq. (14) is satisfied by any pair of bound-state wave functions (f, g), one 
can obtain such a representation of LEAF Hamiltonian as 

~LEAF = ~, ~ I(~ai) W(oL, i; a,j; ~o~)Eeq(~otj[. (16) 
ot=l i j 

4. Another representation of W(a, i; fl,j; ~v) 

In this section, another representation of the function W(a, i; fl, j; ~ )  will be 
obtained for computation or approximation. First, a necessary condition of 
W(a, i; ~,j; ~ )  required by the condition of the domains of integration { ~ }  
(Eqs. (3) and (4)) will be derived. From the addition theorem of definite integra- 
tion (Eq. (8)) as the necessary condition of Eqs. (3) and (4), the function 
W(a, i; fl, j; ~.r) that is defined in Eq. (15) should satisfy the condition 

eb ~,~a~j dr 
y=l y=l  ~, 

= f~3 ~*'r dr. (17) 

Secondly, some sets of one-electron functions will be introduced from the set of 
atomic orbitals {~b~i}. A set of one-electron functions { ~ i )  is defined as 

q~i(r) _= { A ~ i ~ j i ( r ) ( t ~  ~ )  (18) 
(r~o) ,  

where A~ is the normalization factor. In addition, one introduces the set {A~i}, 
which is obtained by the symmetric orthonormalization [6] of the set {q~} as 

)ko = g- -1 /2~ ,  (19) 

where k ~ and ~ denote the column vectors the components of which are A~.'s 
and ~ ' s ,  respectively, and the (a, i; fl, j)-element of the square matrix S is 
defined as 

g,~,.t3j =- f 3  g*,~Pt3j dr. (20) J~ 
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If the off-diagonal elements of S are sufficiently small, the matrix g-a/2 can be 
expanded as 

g-l /2= 1 - ( 1 / 2 ) ~ + ( 3 / 8 ) @ 2 - +  . . . ,  (21) 

where 1 denotes a unit matrix and �9 is defined as 

~ - g - 1 .  O" 

Thus each component of the column vector in Eq. (19) is represented as 

(22) 

h~, = ~b~,- (1/2) ~ ~ (7.,.~j~b~j 
8 = 1  j 

+(3/8)  ~ ~ ~ ~ (7.,,~j~j,3"kqS'~k--+" �9 ". (23) 
f l = l  j 3,=1 k 

Since ~7~i.~j vanishes in case of a # fl from Eq. (18), h~i is expressed in the form 
of the linear combination of (~ ' s  as 

h~, = (~.,- (1/2) Y (7.~,./~ + (3/8) ~ Z a.,.~ja~..k~o.k -- + ' ' ' .  (24) 
j j k 

Accordingly, h~'s are zero outside the cell ~ .  as (~.i's (Eq. 18), and an arbitrary 
bound-state wave function f on the domain ~ .  can be expanded in terms of 
h~i's as 

f ( r )  = Y. A~,(r)(A~,lf) (r ~ ~.) ,  (25) 
i 

which is due to the completeness of the set {~b.~} on the domain ~ .  (Eq. 11). 
Since the variable of integrand belongs to the domain ~v in the integral 
W( a, i; fl, j; ~3") (Eq. (15)), 

(I = 2 2 (~b.ila?rk) ,~~176 ~, dr A3",[ga~j) 
k I g./  

= 2 (~,~,l~>(a~l ~,~j), (26) 
k 

where it is utilized that A~k'S are the orthonormalized functions also on the 
domain ~3". From the completeness of the set {h~k} on the domain ~3, 
W(a,  i; r ,  j; ~,) ' s  in the form of Eq. (26) obviously satisfy the necessary condition 
of atomic cells (Eq. 17). 

5. Approximate forms of ~LEAF and W(a, i; fl,j; ~ ) ' s  

As long as the atomic cells { ~ }  are not definitely given, the exact W(a,  i; fl, j; ~3") 
cannot be obtained. Here, we will introduce the three approximations, which 
implicitly include the definition of atomic cells {~} ,  and obtain approximate 
forms of ALEAF and the W(a,  i; a , j ;  ~ ) ' s  which appear in Eq. (16). 
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First of  all, subsets of {qS~i}, G~'s, are given, each of which consists of the 
ground-state atomic orbitals (AO's) on the nucleus a and the excited AO's  on 
the nucleus a with the orbital radii comparable to the longest of the ground-state 
AO's radii, in other words, the core and valence AO's on the nucleus a. From 
the assumption of the zeroth order molecule and the LEAF potential, it is 
reasonable to confine our attention to the one-electron-function space spanned 
by the elements of G~'s, namely, core and valence AO's. 

Approximation A 

An arbitrary one-electron function (core or valence) on the domain ~ is approxi- 
mated as 

G 

f ( r )=  ~ ,~.i(~.,[f) (r c ~o). (27) 
i 

The introduction of Approximation A into Eq. (16) gives the following approxi- 
mate Hamiltonian as 

~ L E A F  ~ ~ ~ ~ ](~o4)W(ol, i; a,j; ~)e,j(~baj[, ( 2 8 )  
a = l  i j 

as long as one treats core and valence orbitals. 

Since any atomic cell ~ contains a large portion of any core or valence AO on 
the nucleus a, the following approximation may be appropriate, considering Eq. 
(18). 

Approximation B 

~i-~ ~i,  (29) 

where thai belongs to the G~. 

If one introduces Approximation B into the W(a, i; a,j; ~ ) ' s  in Eq. (15), 
considering Eq. (18), 

W( a, i; a,j; ~ )  = f ~  ( ~b~i/ A~i)( ~ /  A,,j) dr 

dr 

= (A.~)-28ij 

=W(a , i ;a , i ;~a )8~  ( 4 ~  c G~ and q~j c G~), (30) 

where it is noted that the factor (A~) -2 is identical with W(a, i; a, i; ~ . )  from 
the definition of A~, and real forms of AO's are used. From now on, only the 
real one-electron functions will be considered. 
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Introducing Approximation B, the complete orthonormal set {a~} in Eq. (23) 
may be approximated by the orthonormal set {A,~}, each element of which is 
defined as 

/3=1 j 

+(3/8) /.., 
/3=1 j ~,=1 k 

- + . . .  (6~,~ Go), (31) 

where 

cr~i,,j =- f ~  ~b~i4)r d r -  ~ .  (32) 

The A~'s localization in the cell ~ is supported by the theorem that the symmetric 
orthonormalization minimizes the sum of squared distances (in Hilbert space) 
between each initial function and a corresponding function of the linearly trans- 
formed set [7]. In addition, the theorem also justifies the approximation that any 
core or valence orbital on the domain ~ could be expanded in terms of A~,'s 
like q~,,~'s in Approximation A. The matrix representation of Eq. (31) is 

x~ : do~- (1 /2)~do~+ ( 3 / 8 ) ~ d o ~ - + . . .  

= (1 + ,r ~)-~/2do~, (33) 

where dO ~ denotes the column vector, the components of which are all the elements 
of the subset 

G - = G 1 u G 2 ~ 3 " " u G , =  0 G~, (34) 
a = l  

each component of ~ is )t~i in Eq. (31), and the symmetric matrix cr~ has the 
elements o'~i,~j's defined in Eq. (32). From the representation of W(a, i;/3,j; ~ )  
in Eq. (26), the use of &~j's in place of a~j's gives approximate W(a, i, a, i; ~ ) ' s  
a s  

% 

J 

% 
: E [(dod'x~)]~,.~j[(x~l'do~)]~,~, 

J 

% 
= Z I [ ( l+ 'r~) ' /2 ]~j l  2, (35) 

J 

where the square bracket with the subscript (ai, ~j) denotes the (a, i;/3, j)-element 
of the matrix in the bracket, and tM means  the transposed matrix of M. Substitut- 
ing i and j for subscripts (a, i) and (/3,j), respectively, each term in Eq. (35) is 



One-electron model  for extended Hfickel type MO calculations 247 

rewritten as 

I[(1 + ~r~)'/21012 = 1[1 + (1/2)qr~ - (1/8)qr~+. �9 �9 ]~l 2 
G 

= [60 + (1/2)o- U - (1/8) Y~ o',po'vj + ' ' '  12 
P 

G 

= (6,j)2+ 6~o- ~ + (1/4)(o.0)2_ (1/4)6 ~ E (o.,p)2+.. ", (36) 
P 

where only the terms up to second order of o. are described. Summarizing Eqs. 
(35) and (36) yields 

. % 

W(a,  i; a, i; ~ ) = 1 - ( 1 / 4 )  • E (O'oti, flj) 2"~' ' ' ,  (37) 
t3=1 j 

and 

co 
W(a ,  i; a, i; ~t3) = (1/4) E (o.~i, t3j) 2 + ' ' "  (a #/3). (38) 

J 

Considering the definition of o.~i./3j in (32), the approximate values of 
W ( a ,  i; a, i; ~/3)'s in (37) and (38) seem to satisfy the necessary condition 
of atomic cells in Eq. (17). Actually, the satisfaction can be proved in the form 
of Eq. (35) as 

% 
i; i, E [(l+cr~)'/2]~,.t3j[(l+crc)'/2]t3j.~, 

13=1 13=1 j 

= [1 +cr~]~.~i 

= 1. (39) 

Introducing the approximation in (30) into Eq. (28), one obtains the approximate 
form of ~LEAV as 

n G 

~LEAF = E ~ [Ch~k)W(a, k; a, k; ~)e~k(~b~k]. (40) 
a = l  k 

However, if one successively introduces Approximations A and B, the invariance 
of the one-electron Hamiltonian with respect to the rotation of qS~k'S around the 
nucleus a is not guaranteed. In order to retain the invariance, we define an 
average value as 

W~at =- (2 /+1) - '  E W(a,  i; a, i; ~ ) ,  (41) 
i 

where the summation runs over all the AO's which have the center a, the principal 
number r~, and the azimuthal number I. In addition, we introduce the following 
approximation. 

Approximation C 

Each W,~  is substituted for (21+ 1) corresponding W(a,  i; ~, i; ~ ) ' s  in (40). 
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Approximation C yields 

G {o~,,~,/} 

~LEAF ~'-~- i % WccfiIEe~s 2 l~ok><~'okl, (42) 
a = l  {a,t],l} k 

where the AO sets {a, r~, 1} are the subsets of G~, e~m denotes the orbital energy 
shared by the AO's which belong to the set {a, s 1}. Introducing the approximation 
in (35) or (37) into Eq. (41), one finds the approximate form of W~m as follows. 

{a,r],/} G 
W,~I- - (21+l )  -1 Y~ ~ l [ ( l + ~ r  ~/21 12 (31 Jod, otjl 

i j 

= ( 2 l + 1 )  -~ Y, 1 - ( 1 / 4 )  2 (o- ,~, /3fl :+. . . .  (43) 
i 13=1 j 

Considering that the symmetric matrix (1 +~rc)  ~/2 is transformed into 

R(1 + o'e)~/2 t R (44) 

by the atomic rotation that is represented by the orthogonal matrix R, it is obvious 
that the approximate forms of W~at in (43) and ~LEAF in (42) are invariant against 
the atomic rotation. 

6. Coulomb and resonance integrals 

From the approximate form of LEAF Hamiltonian (42), one can derive several 
types of extended Hiickel Hamiltonian by the following approximations. 

Approximation 1 

The differential overlaps (~b,~b/3j's) between core and valence orbitals are 
neglected. 

From the chemical standpoint, we are interested in the valence orbitals. If one 
introduces Approximation 1, the valence part of ~LEAF can be treated independently 
of the core terms of the Hamiltonian, because the resonance integrals between 
valence and core AO's are zero with respect to the ~LEAF in the form of Eq. (42). 
Thus the valence block of  the approximate matrix of ~LEAF can be separated as 
an independent matrix. Each element of the matrix is represented as 

{~,~,I} 

o~=1 { c~,s k 

= ~ SrkWkekS~, (45) 
k 

where the summation with respect to k runs over all the valence AO's in the 
molecule, t'r's denote the valence AO's as basis functions, S,k is the (r, k)-element 
of the matrix 1 + cry, and Wk and ek are the W~at and the e,a~ of 4~k, respectively. 
From Eq. (45), one can see that each matrix element (Coulomb or resonance 
integral) of the valence LEAF one-electron Hamiltonian includes the influences 
from all the atoms (a  = 1 , . . . ,  n) in a molecule. 
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Approximation 2 

Wk'S, which are near and.less than unity, are taken as unity. 

I f  one introduces Approximation 2 into Eq. (45), the formula will be identical 
with that of  the energy weighted maximum overlap (EWMO) model, which was 
developed in a Green's  function or propagator  formulation [8], and was derived 
and analyzed by the density functional theory [9]. The EWMO model doesn' t  
have any concept of  such atomic cells as given in the LEAF model. However, 
there is one characteristic that is possessed by both EWMO and LEAF and that 
arises from the common form 

Hrs = ~ SrkFkSks, (46) 
k 

where Fk'S are all negative. This characteristic is that all the MO energies calculated 
from the matrix elements Hrs'S in Eq. (46) are negative. It can be easily proved 
with the real quadratic form of the matrix {Hrs}. This property is reasonable 
because the one-electron state function represented by an LCAO function 
describes a state of  an electron bound by a molecule, the state function of which 
is characterized by the equation 

lim ~b(r)=0 2. (47) 

Approximation 3 

The AO's as basis functions are replaced by the symmetrically orthogonalized 
energy weighted atomic orbitals, each of which is close to the corresponding 
original atomic orbital [9]. 

I f  one introduces Approximation 3 in addition to Approximation 2, one obtains 
the formula 

Hr~ = -Sr ,  x/H--~H,s, (48) 

where St, denotes the overlap between the corresponding original AO's ~br and 
qS~ [9]. This formula has the form similar to that which was proposed by Ballhausen 
and Gray [10]. 

Approximation 4 

In Eq. (45), each Wk, which is near and less than unity, is replaced by the average 
value of  all the Wk's, and the second-order terms of the overlaps that are not 
equal to unity are neglected. 

2 If the energy of a state represented by an LCAO were positive, the corresponding solution of the 
Schr6dinger equation in the region sufficiently far apart from the molecule would have the form 

O(r) =A exp (+ik. r), 

since both the Coulomb attractive and repulsive terms would be sufficiently small. This solution 
contradicts Eq. (47) 
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If one employs Approximation 4 after Approximation 1, one finds 

{ Wer (r= s) 
H~s= WSrs(er+es) ( r # s ) ,  (49) 

where W denotes the average value of all the Wk'S in Eq. (45). From the Eq. 
(49), one finds the Wolfsberg-Helmholz-type relationship [ 11 ] between resonance 
and Coulomb integrals, 

Hrs = (K/2)Sr~(H~ + Hss), (50) 

where the parameter K is equal to 2. However, there's a definite inequality 
between the Coulomb integrals in Eq. (45) and Eq. (49) as 

IL WkekS2rl ~ [ W ~ ekS2r> [ WErl. (51) 
k k 

Thus it is more reasonable that the Coulomb integral in Eq. (45) should be 
estimated by the inequality 

IH~l >- l Werl . (52) 

In this case, which is closer to the LEAF formalism (Eq. 45), the K parameter 
is near and less than 2 in the Wolfsberg-Helmholz relationship (Eq. 50). It is 
interesting that the previously recommended value of the parameter K is 1.75 
[1], which is near and less than 2 as expected by the LEAF formalism. 

7. Molecular orbital energies of H20 

In this section the MO energies of H20, which are calculated under the valence 
LEAF formalism and the popular Wolfsberg-Helmholtz (WH) formalism, will 
be presented. The geometry of H20 is taken as O-H distance = 0.9575 A and 
/_HOH=104.5 ~ under C2~ symmetry. The used valence AO's are Slater-type 
orbitals (~(H, ls) = 1.0000, ~(O, 2s) = 2.2458, ~(O, 2p) -- 2.2266) [12] and the used 
AO energies (ek'S in LEAF, Hrr's in WH) are the negative values of VOIP's 
(e(H, ls) -- -13.60 eV, e(O, 2s) = -32.34 eV, e(O, 2p) -- -15.80 eV) [13], each of 
which is near the corresponding Hartree-Fock AO energy [14]. The parameter 
K is taken as 1.75 in the WH formalism, and in the valence LEAF formalism 
(Eq. 45), based on Approximation 1, Wk is given as 

(c~,,L/} 

Wk W ~ l = ( 2 1 + l )  -~ Y~ ~1[(1 + v, J,~,,~jl, = tr al/21 12 (53) 
i j 

where l + t r v  denotes the matrix of the overlaps between valence AO's. 

Table 1 shows the valence MO energies of H20, which were calculated under 
the above condition, and the measured ionization potentials corresponding to 
the valence MO's [15]. If  one adopts the independent-particle model in the 
analysis of the electronic states of a molecule, the MO energies can be compared 
with the negative values of experimental ionization potentials. The agreement 
between the calculated (in both LEAF and WH) and experimental values is good. 
However it should be noted that the LEAF MO energies are given for the average 
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Table 1. Valence molecular orbital energies of H20 (in eV) 

MO LEAF ~ W H  b Ip c 

2b2 -4.64 +4.03 --  
4al -6.28 +9.95 --  
lb I -15.40 -15.80 12.61 
3al -16.52 -16.26 14.73 
lb2 -18.09 -17.52 18.55 
2a~ -36.98 -33.40 32.19 

a Calculated under the valence LEAF formalism 
b Wolfsberg-Helmholtz formalism with K = 1.75 
c Ionization potentials of H20 in the ground state [15] 
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state of the ground and valence-excited configurations, in contrast with the 
Koopmans theorem for the Hartree-Fock MO energies which are given for a 
single state, usually for the ground state. 

The energies of 4al and 2b2 MO's are negative in the LEAF formalism while 
those in the WH formalism are positive. These differences are connected with 
not only the property of one-electron Hamiltonian but also the estimation of 
excitation energies. I f  the complete Hamiltonian is approximated by the simple 
sum of the one-electron Hamiltonians for core and valence electrons as in Eq. 
(1), the excitation energy to promote an electron from a valence MO to another 
valence MO can be estimated with the difference in energy between the involved 
valence MO's. The excitation energies estimated by the LEAF formalism are 9.12 
and 10.76 eV for the ( lb1~4a1) and ( l b ~ 2 b 2 )  excitations, respectively. These 
values are near the CI-calculated excitation energies from the ground state to 
the singlet (lb~ ~ 4al) and (lbl-~ 2b2) excited states (12.46 and 12.40 eV, respec- 
tively) [16]. On the other hand, the WH formalism estimated the (lbl-~ 4al) and 
(lb~ ~ 2b2) excitation energies to be 25.75 and 19.83 eV, which are far apart from 
the CI results. 

The above discussion suggests that the LEAF Hamiltonian is suitable for the 
zeroth order description of the complete Hamiltonian for the ground and valence- 
excited states (Eq. 1), and therefore, that the LEAF MO's may be somehow 
useful in the CI calculations of the ground and valence-excited states. 

8. Conclusion 

A new model for extended Hfickel type molecular orbital calculations with the 
concept of atomic cells was proposed and new forms of Coulomb and resonance 
integrals were derived from this model. Previous forms of Coulomb and resonance 
integrals (Wolfsberg-Helmholtz, Ballhausen-Gray, and EWMO) were also 
derived with several approximations from the new form. In the similarity to the 
EWMO model, the negative definite property of the energies of LCAO molecular 
orbitals was emphasized. In the comparison with the Wolfsberg-Helmholz form, 
the magnitude of the parameter K was discussed. Finally, it was found that the 
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z e r o t h  o r d e r  e s t i m a t i o n  o f  v a l e n c e  e x c i t a t i o n  ene rg i e s  o f  H 2 0  in t he  L E A F  

f o r m a l i s m  was  in g o o d  a g r e e m e n t  wi th  t he  C I  resul ts .  
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